Abstract

Military helicopter pilots are expected to wear a variety of items of body-borne equipment during flight so as to be prepared for any situation that may arise in combat. Helicopter seats are designed to a specified weight range for an occupant with equipment. This paper investigates how distributing the equipment on the body affects injury potential during a helicopter crash. A finite element model representing a helicopter seat with a fully deformable 50th percentile Hybrid III carrying equipment was developed. The model was subjected to a standard military certification crash test. Various equipment configurations were investigated and analysed to determine its influence on the risk of injury. It was found that placing the equipment low on the torso, i.e. near the thighs, not only reduces the likelihood of injury in the lumbar, spinal region but also provides favourable results in neck and head injury risk when compared to other configurations investigated. In contrast, placing equipment high on the torso, i.e. close to the chin, increases the lumbar load and implicitly, the risk of head injury. A statistical analysis is carried out using the Wilcoxon Signed Rank Test to deliver probability of loads experienced within a certain interval. This study recommends an equipment configuration that improves survivability for an occupant seated on a fixed load energy absorbing seat which is subjected to Military Standard 58095A Test 4.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call