Abstract
A numerical study is performed to investigate deposition and erosion of Syngas ash in the leading edge region of a turbine vane. The leading edge of the vane is modeled as a symmetric semi-cylinder with a flat after body. Three rows of coolant holes located at stagnation and at ±21.3° from stagnation are simulated at blowing ratios of 0.5, 1.0, 1.5 and 2.0. Large Eddy Simulation (LES) is used to model the flow field of the coolant jet-mainstream interaction and syngas ash particles are modeled using a Lagrangian framework. Ash particle sizes of 5 and 7 micron are considered. Under the conditions of the current simulations, both ash particles have Stokes numbers less than unity of O(1) and hence are strongly affected by the flow and thermal field generated by the coolant interaction with the mainstream. Because of this, the stagnation coolant jets are quite successful in pushing the particles away from the surface and minimizing deposition and erosion in the stagnation region. Overall, about 10% of the 5 μm particles versus 20% of the 7 μm particles are deposited on the surface at B.R. = 0.5. An increase to B.R. = 2, increases deposition of the 5 micron particles to 14% while decreasing deposition of the 7 micron particles to 15%. Erosive ash particles of 5 μm size increase from 5% of the total to 10% as the blowing ratio increases from 0.5 to 2.0, whereas 7 μm erosive particles remain nearly constant at 15%. Overall, for particles of size 5 μm, there is a combined increase in deposition and erosive particles from 16% to 24% as the blowing ratio increases from 0.5 to 2.0. The 7 μm particles, on the other hand decrease from 35% to about 30% as the blowing ratio increases from 0.5 to 2.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.