Abstract

Directing self-assembly of photopolymerizable systems is advantageous for controlling polymer nanostructure and material properties, but developing techniques for inducing ordered structure remains challenging. In this work, well-defined diblock or random copolymers were incorporated into cationic photopolymerizable epoxy systems to investigate the impact of copolymer architecture on self-assembly and phase separated nanostructures. Copolymers consisting of poly(hydroxyethyl acrylate)-x-(butyl acrylate) were prepared using photoiniferter polymerization to control functional group placement and molecular weight/polydispersity. Prepolymer configuration and concentration induced distinctly different effects on the resin flow and photopolymerization kinetics. The diblock copolymer self-assembled into nanostructured phases within the resin matrix, whereas the random copolymer formed an isotropic mixture. Rapid photopolymerization and ambient temperature conditions during cure facilitated retention of the self-assembled phases, leading to considerably different composite morphology and thermomechanical behavior. Increased loading of the diblock copolymer induced long-range ordered cocontinuous structures. Even with nearly identical prepolymer composition, controlled nanophase separation resulted in significantly enhanced tensile properties relative to those of the isotropic system. This work demonstrates that controlling phase separation with a block copolymer architecture allows access to nanostructured photopolymers with unique and enhanced properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call