Abstract

Different modifications of the Rushton turbine were studied in a dual-impeller agitated tank (T = 0.4 m), to find the effect of blade form on power draw, turbulent dispersion, gas handling capacity, mixing, gas holdup, and mass-transfer rate performance under turbulent agitation in an air−water system. Blade streamlining was found to lead to a lower ungassed power number, a higher gas flow number before flooding, and increased insensitivity of impeller power dissipation to the gassing rate. This is consistent with the formation of smaller trailing vortices and ventilated cavities behind the blade. At the same power input and superficial gas velocity, however, the different impellers provided the same mixing time t0.05, gas holdup εG, and specific mass-transfer coefficient KLa. Each of these variables correlates with the specific power input PG/VL, clearly suggesting that a better performance may be expected after retrofitting of Rushton turbines with streamlined impellers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.