Abstract

BackgroundBisphosphonate coating of dental implants is a promising tool for surface modification aiming to improve the osseointegration process and clinical outcome. The biological effects of bisphosphonates are thought to be mainly associated with osteoclasts inhibition, whereas their effects on osteoblast function are unclear. A potential of bisphosphonate coated surfaces to stimulate osteoblast differentiation was investigated by several in vitro studies with contradictory results. The purpose of this systematic review and meta-analysis was to evaluate the effect of bisphosphonate coated implant surfaces on alkaline phosphatase activity in osteoblasts.MethodsIn vitro studies that assessed alkaline phosphatase activity in osteoblasts following cell culture on bisphosphonate coated titanium surfaces were searched in electronic databases PubMed/MEDLINE, Scopus and ISI Web of Science. Animal studies and clinical trials were excluded. The literature search was restricted to articles written in English and published up to August 2019. Publication bias was assessed by the construction of funnel plots.ResultsEleven studies met the inclusion criteria. Meta-analysis showed that coating of titanium surfaces with bisphosphonates increases alkaline phosphatase activity in osteoblasts after 3 days (n = 1), 7 (n = 7), 14 (n = 6) and 21 (n = 3) days. (7 days beta coefficient = 1.363, p-value = 0.001; 14 days beta coefficient = 1.325, p-value < 0.001; 21 days beta coefficient = 1.152, p-value = 0.159).ConclusionsThe meta-analysis suggests that bisphosphonate coatings of titanium implant surfaces may have beneficial effects on osteogenic behaviour of osteoblasts grown on titanium surfaces in vitro. Further studies are required to assess to which extent bisphosphonates coating might improve osseointegration in clinical situations.

Highlights

  • Bisphosphonate coating of dental implants is a promising tool for surface modification aiming to improve the osseointegration process and clinical outcome

  • Studies were considered eligible under the following criteria: In vitro evaluation of titanium surfaces (P) that were coated with bisphosphonates (I), compared to non-treated control (C), regarding Alkaline phosphatase (ALP) activity in osteoblasts that have been cultured on the surfaces (O)

  • The following medical subject headings (MeSH) terms and keywords were used for search strategies in MEDLINE via PubMed: ((((((((bisphosphonate [MeSH Terms] OR bisphosphonate coating) OR phosphonate) OR alendronate) OR zoledronate) OR zoledronic acid) OR risedronate) OR ibandronate) OR pamidronate) AND AND ((alkaline phosphatase [MeSH Terms] OR alkaline phosphatase activity) OR ALP) AND

Read more

Summary

Introduction

Bisphosphonate coating of dental implants is a promising tool for surface modification aiming to improve the osseointegration process and clinical outcome. Earlier research efforts were mainly focused on dental implant geometry intending to improve clinical outcome and long-term success. Later the focus of interest was shifted towards topographical and chemical modifications of implant surfaces. These modifications aimed to improve osseointegration through enhancement of the underlying biological processes [5, 6]. Besides topographical characteristics and hydrophilicity, surface coating with drugs, proteins, growth factors or specific agents is extensively investigated as a future tool in implantology [11, 12]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call