Abstract

Sulfur mustard, bis(β-chloroethyl)sulfide (BCES), a bifunctional alkylating agent, is a vesicant whose mode of action involves interference with the integrity of cellular DNA. Alkylation of DNA is responsible for some of the biological effects of BCES in tissue. Another possible mechanism by which BCES could exert its toxic effect is interference with high fidelity repair of damaged DNA. This study evaluated the possible effects of BCES on the repair of specific errors, i.e., mismatched bases, in the DNA. Heteroduplex (ht) DNA, formed between two temperature-sensitive mutants of SV40 virus, tsA239 and tsA255, each having a different point mutation in the gene for large T antigen, was used to study the effect of BCES on mismatched base repair in African green monkey kidney (AGMK) cells. AGMK cells were exposed to dilute solutions of BCES in methylene chloride (MC) prior to cationic lipofection with ht DNA. In order for the cells to produce wild type (wt) SV40 DNA at a nonpermissive temperature (41°C), repair of at least one of the two mismatches in the DNA had to occur. It was observed that (a) as the concentration of BCES was increased, a proportionally longer delay in the appearance of wt DNA at 41°C was observed in treated cells transfected with ht DNA as compared with cultures exposed to MC alone and then transfected with ht DNA, (b) there was no such effect in exposed AGMK cells transfected with wt DNA, (c) wt and ht DNA were transfected at similar rates in unexposed cells, and (d) BCES did not affect the rate of transfection of wt cells. These observations are consistent with the hypothesis that BCES affects mismatched base repair.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.