Abstract

Birch sap consists of a natural water-based solution with valuable compounds such as minerals, sugars, organic acids and phenolic compounds that can be used advantageously in the preparation of edible films. In this study, gelatine- and casein-based films were prepared using birch sap as biopolymer solvent and source of bioactive compounds with the aim of developing new bioactive materials for food packaging. The physical, mechanical, barrier, antioxidant and iron-chelating properties of the obtained films were investigated. Birch sap enhanced the mechanical properties of the films by increasing puncture strength and flexibility, as well as their ultraviolet-visible light barrier properties. In addition, the presence of bioactive compounds endowed the birch sap films with an antioxidant capacity of almost 90% and an iron-chelating capacity of 40-50% with respect to the control films. Finally, to test these films as food packaging material, a photosensitive curcumin solution was packed and exposed to ultraviolet light. Tested films were able to protect curcumin against photodegradation, and the presence of bioactive compounds inside the birch-sap-enriched materials offered an additional 10% photoprotective effect compared to control films. Results showed the potential of birch sap as an environmentally friendly biopolymer solvent and plasticizer that can improve the mechanical and photoprotective properties of the prepared materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call