Abstract

Postoperative complications associated with cardiopulmonary bypass (CPB) surgery and extracorporeal circulation (ECC) procedures are still a major clinical issue. Improving the hemocompatibility of blood contacting devices used for ECC procedures may ameliorate various postpump syndromes. In a simulated CPB model using human blood, we investigated the hemocompatibility, fibrinogen adsorption, and platelet receptor (GPIIb-IIIa) binding capacity of surface-modified membrane oxygenators (Jostra Quadrox). Three groups were compared: (i) biopassive protein coatings (SafeLine), (ii) bioactive heparin coatings (BioLine), and (iii) noncoated controls. During the 2 h recirculation period, plasma concentrations of activation markers for platelets (beta-thromboglobulin), inflammation (elastase), complement (C5a), and coagulation (prothrombin fragment 1+2, thrombin-antithrombin III) were lower in the groups with biopassive and bioactive coatings compared to the noncoated group (p < 0.01). These parameters did not significantly differ between the two surface-coated groups, except for complement activation: C5a levels were higher in the biopassive group compared to the bioactive group (p < 0.01). Moreover, surface-coated oxygenators showed less fibrinogen adsorption, GPIIb-IIIa binding, and platelet/leukocyte adhesion (p < 0.01). We assume that fewer fibrinogen and platelet receptor molecules bound to the surface-coated oxygenator surfaces results in fewer platelet adhesion and activation, which will significantly contribute to the improved hemocompatibility of the biopassive and bioactive oxygenators. Our results suggest that the application of bioactive oxygenators (BioLine) during CPB surgery may reduce postoperative complications for the patient more effectively than biopassive oxygenators (SafeLine).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.