Abstract

A hydrofoil is a basic shape of fluid machinery blades, and its drag reduction performance is an important reference index in the field of fluid transportation. When fluid flows around a hydrofoil, it generates friction drag and pressure drag, greatly reducing the hydrofoil’s hydraulic performance. This study designs a bionic drag reduction structure by arranging fish scales on a Clark-Y hydrofoil. The overlapping size, thickness, and coverage area of fish scales are taken as design parameters, and the optimal design scheme is attained by using the Taguchi method. Large eddy simulation is used to numerically simulate various schemes. Results show that when the overlapping size O is 2.00 mm, the thickness h is 0.36 mm, the initial position x/C of the fish scale covering is 0 (where C is the chord length of the hydrofoil), and the hydrofoil exhibits excellent drag reduction performance. The total drag reduction rate of the hydrofoil is up to 35.15%, and the drag reduction rate of friction drag and pressure drag is up to 39.56% and 25.64%, respectively. The lift–drag ratio of the hydrofoil increases by 18.04%. The bionic fish scale structure effectively inhibits turbulence, thereby reducing the drag caused by the transformation of laminar flow to turbulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.