Abstract

This study aimed to evaluate the effect of biocompatible polymers on the physicochemical and dissolution properties of poorly water-soluble drugs in nanoparticle systems. Four types of nanoparticles containing poorly water-soluble fenofibrate were prepared using solvent evaporation technique with different biocompatible polymers such as polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMC), carbopol and ethylcellulose. Their physicochemical properties were investigated using scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction. The solubility and dissolution of nanoparticle-entrapped fenofibrate were compared with those of free drug powder. Biocompatible polymers affected the morphology and sizes of fenofibrate nanoparticles. PVP or carbopol-based nanoparticles showed spherical appearance, whereas HPMC or ethylcellulose-based nanoparticles formed aggregates with irregular shape. The particle sizes increased in the order of the nanoparticle prepared with carbopol ≤ PVP HPMC > carbopol > ethylcellulose. The enhanced solubility and dissolution of poorly water-soluble fenofibrate via nanoparticle system did not depend on particle size but on crystallinity. In conclusion, in nanoparticle development of poorly water-soluble drugs such as fenofibrate, the nature of biocompatible polymers plays an important role in the physicochemical and dissolution of poorly water-soluble drugs in the nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.