Abstract

In this study, four different biochar application rates and a control were set up using indoor potted tobacco, to study the effects of biochar on the microbial diversity and metabolism of tobacco-growing soil. The five treatments were as follows: control—0% biochar (w/w) + 26 g fertilizer/pot; biochar treatments—1% biochar (w/w) + 26 g fertilizer/pot, 2% biochar (w/w) + 26 g fertilizer/pot, 3% biochar (w/w) + 26 g fertilizer/pot, and 4% biochar (w/w) + 26 g fertilizer/pot. We found that biochar increases the microbial diversity of soils and simultaneously changes the microbial community structure. Under the influence of biochar, soil urease activity increased by 18%, invertase activity increased by 23.40%, polyphenol oxidase activity increased by 59.50%, and catalase activity increased by 30.92%. Biochar also significantly increased the microbial biomass carbon and nitrogen content of the soil. Soil microbial biomass nitrogen had a positive correlation on bacterial diversity, with the highest coefficient, while soil microbial biomass carbon had a positive correlation on fungal diversity, with the highest coefficient. The microbial diversity and metabolic capacity of soil are improved under the influence of biochar, and soil enzyme activity and microbial biomass carbon and nitrogen have positive impacts on soil microbial diversity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call