Abstract
Biochar has been widely applied to paddy fields to improve soil fertility, crop productivity and carbon sequestration, thereby leading to variations in the CO2 exchange between the paddy fields under flooding irrigation and the atmosphere, as indicated by many previous reports. However, few relevant reports have focused on paddy fields under water-saving irrigation. This study conducted a field experiment to investigate the effects of three biochar addition rates (0, 20 and 40 t ha−1) on the CO2 exchange between paddy fields under controlled irrigation (CI, a water-saving irrigation technique) and the atmosphere in the Taihu Lake region of Southeast China. Our results showed that biochar addition increased the paddy field ecosystem respiration (Reco) and the soil respiration rate (Rs) in the CI paddy fields. And biochar application increased the total CO2 emissions and the total soil CO2 emissions, especially at a rate of 40 t ha−1. In contrast, gross primary productivity (GPP) was decreased and the net ecosystem exchange of CO2 (NEE) was increased with biochar addition. However, biochar addition at a rate of 20 t ha−1 significantly increased the total CO2 absorption and the net CO2 absorption of the CI paddy fields (p < 0.05), whereas biochar addition at a rate of 40 t ha−1 had no effect on the total CO2 absorption and decreased the total net CO2 absorption. At the same time, biochar addition significantly increased soil catalase, invertase and urease activities and contributed substantially to the increase in soil invertase activity. In addition, the soil bacterial, fungal and actinomycetal abundances were evidently increased with biochar addition, of which the soil fungal abundance showed the greatest increase. A high correlation was observed between soil catalase and invertase activities and soil microbial abundance. Reco was highly correlated with air and soil temperatures and soil enzyme activity. A significant quadratic polynomial correlation was observed between GPP and leaf area index (p < 0.01). The combination of biochar addition at a rate of 20 t ha−1 and water-saving irrigation has the potential to increase the size of the carbon sink and promote soil enzyme and microbial activities in paddy field ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.