Abstract

The objectives of this study are: (1) Evaluate the capacity of Indian mustard (Brassica juncea) for uptake and accumulation of Cs and Sr natural isotopes. (2) Identify foliar structural and other physiological changes (biomass, relative water content etc.) resulted from the accumulation of these two elements. (3) Monitor the Cs and Sr uptake and bioaccumulation process by spectral reflectance. Potted Indian mustard plants were exposed to different concentrations of Cs (50 and 600 ppm) and Sr (50 and 300 ppm) natural isotopes in solution form for 23 days. Bioaccumulation of Cs and Sr were found in the order of leaves > stems > roots for both Cs- and Sr-treated plants. The highest leaf and root Sr accumulations are observed to be 2,708, and 1,194 mg kg−1, respectively; and the highest leaf and root Cs accumulations are 12,251, and 6,794 mg kg−1, respectively. High translocation efficiency for both elements is documented by shoot/root concentration ratios greater than one. Biomass decreases were observed for plants treated with higher concentration of Cs or Sr. Cs accumulation affected the pigment concentration and internal structure of the leaf and the spectral characteristics of plants. Within the applied concentration range, Sr accumulation resulted in no significant changes in relative water content (RWC), leaf structural and spectral characteristics of mustard plants. Cs shoot concentration showed significant negative correlation with relative water content (RWC; r = −0.88*) and normalized difference vegetative index (NDVI) value (r = −0.68*) of plant shoots. The canopy spectral reflectance and NDVI analysis clearly revealed (p < 0.05) the stress caused by Cs accumulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.