Abstract
This study examined the effect of bio-electrochemical treatment processes on nitrogen and phosphorus removal, but it also evaluated the impact of the treatment processes on the concentration of other nutrients present in hydroponic effluent. A bio-electrochemical reactor (BER) was used in the experiment to treat effluent from the hydroponic cultivation of tomatoes. It was stated that the nitrogen removal efficiency decreased with increasing current density. The study showed that an electric current density of 0.63 A/m2 ensured the lowest effluent nitrate concentration. The nitrogen removal efficiency ranged from 41.6%-R1 (density of 0.63 A/m2) to 8.9%-R4 (density of 5 A/m2). Electric current density higher than 1.25 A/m2 resulted in lower total nitrogen removal efficiency. The total phosphorus removal efficiency increased with increasing electric current density. The phosphorus removal efficiency was the lowest—95.1%—in the R1 reactor, whereas it was the highest in R4—99.1%. The concentration of the other elements in the effluent was determined. The content of molybdenum, boron, sulphates, and potassium did not meet the acceptable norms for discharging hydroponic effluent into the environment. The study showed that bio-electrochemical processes taking place in BER caused secondary contamination of hydroponic wastewater with molybdenum ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.