Abstract

The effect of binder polymer structures used in composite cathodes on the interfacial charge transfer processes in lithium polymer batteries (LPB) has been studied in detail. A cross-linked comb-copolymer, consisting of ethylene oxide (EO), 2-(2-methoxyethoxy)ethyl glycidyl ether (MEEGE), and allyl glycidyl ether (AGE), was used as a solid polymer electrolyte (SPE). LiCoO 2 composite cathodes were fabricated using binder comb-copolymers, consisting of EO and MEEGE with different compositions. Ionic conductivity of the SPE, and the interfacial charge transfer processes between the SPE and metallic lithium and between the SPE and the composite cathode at several cathode potentials versus Li/Li +, were electrochemically explored. With increasing MEEGE composition in the binder copolymers, the interfacial resistances between the SPE and the composite cathode appreciably decreased. As the result, discharge capacity of the LPB also enhanced with increasing the MEEGE composition. The introduction of the branched-side-chains to the polymer backbone to the binder polymers for the composite cathodes caused to facilitate the interfacial charge transport processes, while the introduction had also been found to be very effective in terms of the enhancement of ionic conductivity of SPE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call