Abstract

The glass ceramics composite sealants are among few materials suitable for the solid oxide fuel cells (SOFC) due to their high operating temperatures (600 °C–850 °C). The glass ceramics chemically bond to both the metallic interconnector and the ceramic electrolyte and provide a gas tight connection. A careful and several stages manufacturing procedure is required to obtain a gas tight sealing. In this study, effects of binder burnout process on the sealing performance are investigated employing commercially available glass ceramic powders. The glass ceramic laminates are produced by mixing glass ceramic powders with the organic binders and employing a tape casting method. The laminates are sandwiched between the metallic interconnectors of an SOFC cell. The burnout and subsequent sealing quality are analyzed by measuring leakage rate and final macrostructure of sealing region. The effects of heating rate, dead weight load, solid loading, carrier gas and their flow rates are investigated. It is found that sealing quality is affected from all investigated parameters. While a slower heating rate is required for a better burnout, the mass flow rate of sweep gas must be adequate for removal of the burned gas. The leakage rate is reduced to 0.1 ml min−1 with 2 °C min−1 + 1 °C min−1 heating rate, 86.25% solid loading, 200 N dead weight load and 500 ml min−1 sweep gas flow rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.