Abstract

Densification mismatch and residual stresses of tri-layered yttria-stabilized zirconia (YSZ) membranes prepared by a non-solvent induced phase separation (NIPS) method were investigated. The tri-layered membrane consisted of sponge-like structures and finger-like voids in macroscale. The densification of the two structures were characterized to elaborate their contribution to the densification mismatch, which led to residual stresses of hundreds of megapascal retained in the sintered membranes. The profile of residual stress suggested that it was related to the strain rate mismatch within the NIPS membranes, which was further quantified with an in-situ monitored camber evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.