Abstract

Effect of bilayer membrane curvature of substrate phosphatidylcholine and inhibitor phosphatidylserine on the activity of phosphatidylcholine exchange protein has been studied by measuring transfer of spin-labeled phosphatidylcholine between vesicles, vesicles and liposomes, and between liposomes. The transfer rate between vesicles was more than 100 times larger than that between vesicles and liposomes. The transfer rate between liposomes was still smaller than that between vesicles and liposomes and nearly the same as that in the absence of exchange protein. The markedly enhanced exchange with vesicles was ascribed to the asymmetric packing of phospholipid molecules in the outer layer of the highly curved bilayer membrane. The inhibitory effect of phosphatidylserine was also greatly dependent on the membrane curvature. The vesicles with diameter of 17 nm showed more than 20 times larger inhibitory activity than those with diameter of 22 nm. The inhibitory effect of liposomes was very small. The size dependence was ascribed to stronger binding of the exchange protein to membranes with higher curvatures. The protein-mediated transfer from vesicles to spiculated erythrocyte ghosts was about four times faster than that to cup-shaped ghosts. This was ascribed to enhanced transfer to the highly curved spiculated membrane sites rather than greater mobility of phosphatidylcholine in the spiculated ghost membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call