Abstract

We propose a novel interconnector design, termed bi-layer interconnector, for solid oxide fuel cells (SOFCs). It can disturb the fuel gas and air on the planes normal to the SOFC three-phase-boundary (TPB) layer. In this paper, a two-dimensional half-cell model is developed to study the concentration overpotentials in the fuel side of the SOFC stack with conventional and novel bi-layer interconnectors. The numerical results show that the novel bi-layer interconnector can increase the velocity of the fuel gas in the porous anode. The results of mole fraction distribution illustrate that the novel bi-layer interconnector can effectively disturb the fuel flow. The average H 2 mole fraction in the porous anode of SOFC with bi-layer interconnector is about 4.7% higher than that of conventional SOFC. The average H 2 mole fraction at TPB interface is about 9.2% higher. The concentration overpotential of the novel SOFC design is lower than that of the conventional SOFC design by 5%. It can enhance the mass transfer in porous electrode and improve the performance of SOFC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.