Abstract

Purpose. To investigate the effect of bilateral reaching, with/without inertial loading on the unaffected arm, on hemiparetic arm motor control in stroke.Methods. Twenty unilateral stroke patients were recruited. A three-dimensional optical motion capture system was used to measure the movement trajectory of the hemiparetic arm while performing three tasks: affected limb reaching forward; two-limb reaching forward; and two-limb reaching forward with inertia loading of 25% upper limb weight on the unaffected limb, respectively. Kinematical parameters were utilized to quantify the reaching performance of the affected arm.Results. No matter whether loading was applied on the unaffected arm or not, the bilateral reaching task did not significantly facilitate smoother and faster movement. Furthermore, during bilateral reaching task with/without loading on the unaffected arm, stroke patients showed slower movement, lower maximal movement velocity, feedback control dominant and discontinuous movements in the affected arm than the same task with unilateral reaching. Subjects showed the greatest active upper extremity range of motion in proximal joints during the bilateral reaching task without unaffected arm loading. The amount of trunk movement also increased during bilateral reaching either with or without loading on the unaffected arm. Patients with moderate upper extremity motor impairment performed more discontinuous movements and less active elbow range of motion during bilateral reaching tasks; however, those with mild upper extremity motor impairment performed smoother movements and demonstrated greater active elbow range of motion during bilateral reaching tasks.Conclusions. Bilateral reaching tasks with/without loading on the unaffected arm could be considered as adding challenges during motor control training. Training with bilateral arm movements may be considered as a treatment strategy, and can be incorporated in stroke rehabilitation to facilitate greater arm active movement and improve motor control performance in the affected arm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.