Abstract

The existing practice to estimate seismic performance of a regular building is to carry out nonlinear time history analysis using two-dimensional models subjected to unidirectional excitations, even though the multiple components of ground motion can affect the seismic response, significantly. During seismic shaking, columns are invariably subjected to bending in two orthogonal vertical planes, which leads to a complex interaction of axial force with the biaxial bending moments. This article compares the seismic performance of regular and symmetric RC moment frame buildings for unidirectional and bidirectional ground motions. The buildings are designed and detailed according to the Indian codes, which are at par with the other modern seismic codes. A fiber-hinge model, duly calibrated with the biaxial experimental results, is utilized to simulate the inelastic behavior of columns under bidirectional bending. A comparison of the estimated seismic collapse capacity is presented, illustrating the importance of considering the bidirectional effects. The results from fragility analysis indicate that the failure probabilities of buildings under the bidirectional excitation are significantly higher as compared to those obtained under the unidirectional excitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.