Abstract

Abstract Release of reducing compounds by soybean (Glycine max (L.) Merr.] roots has been identified as an adaptive response mechanism to iron‐deficiency conditions which result in chlorosis. These compounds facilitate the conversion of Fe+3 to the metabolically active Fe+2 form, allowing for increased uptake by roots in solution culture experiments. Degree of chlorosis is closely associated with HCO3 concentration; however, the relationship between that ion and root reduction potential apparently has not been studied. We examined the effect of HCO3‐ on root reduction potential of ten commercially‐grown soybean cultivars known to differ in chlorosis expression in the field. Root reduction potential was measured spectrophotometrically at 594 nm on samples of nutrient solution containing reduced Fe+2 . Plants were grown with 5 mM NaHCO3 or in HCO3 ‐‐free solutions. Averaged over cultivars, 0.205 umoles Fe+3 were reduced in the HCO3 ‐‐free solutions while only 0.009 umoles Fe+3 were reduced in the solutions ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.