Abstract

The electronic and thermoelectric properties of biaxially strained magnesium silicide Mg2Si are analyzed by means of first-principle calculations and semiclassical Boltzmann theory. Electron and hole doping are examined for different doping concentrations and temperatures. Under strain the degeneracy of the electronic orbitals near the band edges is removed, the orbital bands are warped, and the energy gap closes up. These characteristics are rationalized in the light of the electron density transfers upon strain. The electrical conductivity increases with the biaxial strain, whereas neither the Seebeck coefficient nor the power factor (PF) follow this trend. Detailed analysis of the evolution of these thermoelectric properties is given in terms of the in-plane and cross-plane components. Interestingly, the maximum value of the PF is shifted towards lower temperatures when increasingly intensive strain is applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.