Abstract

Cyclic loading stimulation has the potential to change both the mechanical properties and microstructure of cartilage, subsequently damaging the articular cartilage and contributing to joint osteoarthritis. This study focuses on investigating the behavior of knee articular cartilage under biaxial cyclic loading and analyzing the associated microstructural changes at the ultrastructural level. We studied the in-plane biaxial cyclic loading behavior of cartilage with a particular emphasis on understanding the effects of loading paths, taking into consideration the complex loading conditions encountered during daily activities. The experimental results reveal a clear influence of the constraints in the Y-direction (orthogonal direction) on the strain evolution in the X-direction. Furthermore, the variation in orthogonal stress corresponding to the loading path significantly impacts the biaxial mean strain of the test sample. To be specific, the uniaxial path, characterized by no constraints in the Y-direction, demonstrates the highest mean strain of 25.08 ± 0.88% in the X-direction, while the proportional path exhibits the lowest mean strain (10.77 ± 0.49%) in the X-direction due to the Y-direction's largest stress constraint. We explored the effects of stress amplitude and peak stress holding time on mean strain under a square path. Our observations indicate that the mean strain of cartilage increases with the higher stress amplitude or the longer peak stress holding time. Additionally, we analyzed the collagen fibril networks before and after biaxial cyclic loading to reveal the intrinsic deformation mechanism. The rearrangement of collagen fibril networks is closely associated with the stress state of cartilage, where higher stress levels lead to more severe fibril damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call