Abstract

In this work, WN/NbN nanolaminate coatings were synthesized by cathodic-arc physical vapor deposition (CA-PVD) technique on a stainless-steel substrate. The paper reports the microstructure, cross-sectional morphology, surface roughness, and adhesion strength changes caused by variations in the absolute values of the negative substrate bias voltage, Us , in the 50-200 V range. Synthesized coatings were analyzed by Grazing incidence X-ray diffraction (GI-XRD), scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM), laser scanning confocal microscopy (LSCM), and Daimler-Benz test. The phase analysis revealed that multilayer coatings had complex polycrystalline microstructure. They consisted of face-cantered cubic (fcc) β-W2N, fcc δ-NbN, and hexagonal ε-NbN phases. The total thickness and surface roughness had a descending trend with an increase in the absolute value of the negative bias voltage. Moreover, the WN/NbN coating deposited at Us = -50 V demonstrated the best adhesion strength to the substrate, suitable for protective coatings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.