Abstract
The purpose of this work is to explore the impact of 0.5, 1.5, 2.5 and 3.5 wt.% Bi additions on the microstructure and mechanical performance of Sn-1Ag-0.5Cu solder alloy. Scanning electron microscope (SEM) and X-ray diffraction (XRD) were utilized to examine the microstructure of the present solders. Creep measurements have been used for the preliminary assessment of mechanical properties. The steady-state creep rate, έst, diminished as the Bi’s concentration increased and reached 2.5 wt.%, with this trend altering above this point. Furthermore, increasing the aging or testing temperature caused the έst values to increment for all the investigated solders. έst variations with different Bi content and aging temperature were observed by examining the Sn-Ag-Cu solders’ structural evolutions. The mean value of the activation energy of all investigated solder alloys was found to be ∼52 kJ/mol. This value is appropriate to that quoted for the dislocation climb through the core diffusion as the dominant operating mechanism. The XRD findings supported the microstructure and lattice parameters variations with both aging temperatures and bismuth concentrations.
Highlights
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations
Low Ag-content SAC105–xBi (x = 0.0, 0.5, 1.5, 2.5, and 3.5 wt.%) solders were successfully obtained by permanent mold casting
Creep is typically associated with time-dependent plastic deformation of materials at an elevated temperature under constant uniaxial stress [25]
Summary
Among the various Pb-free solders available, Sn-Ag-Cu (SAC) solders have been recognized as the most attractive replacement of
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.