Abstract

Statement of problemComputer-aided design and computer-aided manufacturing (CAD-CAM) has enhanced the physicomechanical stability of ceramics. However, various factors in the oral cavity may impair the longevity of restorations by negatively affecting their properties. Appropriate surface treatments such as glaze application or mechanical polishing are necessary to diminish these effects. PurposeThe purpose of this in vitro study was to evaluate the influence of common beverages and toothbrushing on the surface roughness, microhardness, and color stainability of a vitreous CAD-CAM lithium disilicate ceramic with a glazed or mechanically polished surface. Material and methodsSpecimens (N=160) were divided into 2 groups according to the surface treatment method: polishing with abrasive disks or glaze application. Each group was subdivided (n=8) according to the immersion solution and toothbrushing: distilled water and distilled water plus brushing; coffee and coffee plus brushing; black tea and black tea plus brushing; red wine and red wine plus brushing; and cola and cola plus brushing. Before and after simulating a 5-year period of immersion and toothbrushing, a contact profilometer and a Vickers microhardness tester were used to measure the surface roughness and microhardness. CIELab parameters were assessed by using a portable spectrophotometer, and color differences were calculated by using the CIEDE2000 formula (ΔE00). Data were compared by using 3-way ANOVA/Bonferroni test for post hoc analysis (α=.05). ResultsSurface roughness increased irrespective of solution (P=.763), being influenced by surface treatment (P<.001), with the glazed groups presenting higher values. Microhardness decrease was influenced by solutions (P<.038) and surface treatment (P<.001), and glazing was associated with lower values. Irrespective of the surface treatment, color stainability was influenced by solutions (P<.001), with ΔE00 values for red wine being above the perceptibility threshold (ΔE00>1.30). No influence of toothbrushing was found for any parameter (P>.05). ConclusionsDespite its excellent mechanical properties, CAD-CAM lithium disilicate ceramic degraded after exposure to commonly consumed beverages. Irrespective of surface treatment, beverages decreased microhardness and caused color changes. Surface roughness increased, showing higher variation for glazed groups. Toothbrushing was unable to potentiate or diminish the observed effects. In general, the results showed that proper mechanical polishing can produce a surface with desirable properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.