Abstract

Abstract Through cloud-resolving simulations, this study examines the effect of β on the evolution of tropical cyclones (TCs). It is found that the TC simulated on a β plane with variable Coriolis parameter f is weaker in intensity but larger in size and strength than the TC simulated on an f plane with constant f. Such differences result mainly from the effect of the β shear rather than from the variation of f due to the latitudinal change of the TC position, as illustrated in a three-stage conceptual model developed herein. The first stage begins with the establishment of the β shear and the emergence of asymmetries as the TC intensifies. The β shear peaks in value during the second stage that subsequently leads to the formation of an extensive stratiform region outside of the primary eyewall. The evaporative cooling associated with the stratiform precipitation acts to sharpen the low-level equivalent potential temperature gradient into a frontlike zone outside of the eyewall region, which leads to the burst of convection outside of the primary eyewall. The third stage is characterized by a weakening β shear and the corresponding TC vortex axisymmetrization and expansion. The convection on the inner edge of the stratiform region becomes more organized in the azimuthal direction and eventually causes the TC structure to evolve in a manner similar to the secondary eyewall formation and eyewall replacement usually observed in TCs. It is the active convection outside of the primary eyewall that contributes to a relatively weaker but larger TC on the β plane than that on the f plane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call