Abstract

We investigated the effects of beta-adrenergic blockade with propranolol (P) on circulating catecholamines at rest and during isometric and dynamic exercise. By means of a radioenzymatic assay, we measured plasma norepinephrine (NE) and epinephrine (E) concentrations in nine normal, sedentary men, aged 22 to 34 years. Measurements were made during resting conditions, at 3 minutes of 30% maximal isometric handgrip exercise (IHE), and during submaximal and maximal dynamic treadmill exercise. Measurements were repeated one week later after the subjects received P in doses ranging from 40 to 80 mg four times a day (plasma P levels at the time of exercise ranged from 96 to 303 ng/ml with a mean of 178 ng/ml). We also measured serum dopamine-beta-hydroxylase (DBH) activity to detect changes in chronic sympathetic tone. Changes in NE from rest to exercise were significant ( p < 0.01) at all exercise loads with or without P. Changes in E from rest to exercise were significant ( p < 0.01) at all exercise loads with or without P except for submaximal dynamic exercise during the control study ( p > 0.05). For NE, there were no significant differences between the control and P values either at rest or during any form of exercise. For E, there were no significant changes between the control and p values at rest or at maximal dynamic exercise, although there were mild increases ( p < 0.05) with IHE and submaximal dynamic exercise. DBH activity increased significantly ( p < 0.01) from rest to exercise for all exercise points with and without P, but there were no significant differences between the control and p values either at rest or during any form of exercise. In conclusion, we have demonstrated that competitive blockade of beta-adrenergic receptors at the tissue level does not alter neural release of NE or DBH and has little effect on adrenal release of E.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.