Abstract

In this study, the effect of berberine, an isoquinoline alkaloid isolated from Coptidis rhizoma, on Nitric Oxide (NO) production, as a possible involved factor, during excitotoxic injury in oligodendroglial cells were evaluated. The overactivation of ionotropic glutamate receptors which is known as the excitotoxicity, is an important phenomenon because of the contribution in acute injury to the central nervous system, chronic neurodegenerative disorders, oligodendrocyte loss and demyelinating diseases as Multiple Sclerosis (MS). Intracellular Ca2+ overload, have a key role during excitotoxic injury and such increase in cytoplasmic Ca2+ triggers a series of events such as production of NO that end to cell death. Previous report showed the protective effects of berberine on ischemic-induced excitotoxic insult in oligodendrocytes. Hereby, we intended to know if the NO production could be associated with oxygen-glucose deprivation/reperfusion-induced excitotoxic damage in oligodendrocyte; moreover, the alteration of NO production could be considered as an involved mechanism for protective effect of berberine in such condition. Therefore, the effect of berberine (2 μM) on NO production during oxygen-glucose deprivation/24 h reperfusion in oligodendrocytes were examined. The OLN-93 cell line (a permanent immature rat oligodendrocyte) was used as a model of oligodendrocyte. Thirty minutes-oxygen-glucose deprivation/24 h reperfusion was used to induce excitotoxicity. NO production was evaluated by Griess method. Our results demonstrated that berberine (2 μM) significantly decreased NO production during 30 min oxygen-glucose deprivation/reperfusion. It seems that blockade of NO production by berberine may also participate in oligodendroglial cell protection against oxygen-glucose deprivation/reperfusion-induced insult.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.