Abstract
EAAC1-mediated glutamate transport concentrates glutamate across plasma membranes of brain neurons and epithelia. In brain, EAAC1 provides a presynaptic uptake mechanism to terminate the excitatory action of released glutamate and to keep its extracellular concentration below toxic levels. Here we report the effect of well known anxiolytic compounds, benzodiazepines, on glutamate transport in EAAC1-stably transfected Chinese hamster ovary (CHO) cells and in EAAC1-expressing Xenopus laevis oocytes. Functional properties of EAAC1 agreed well with already reported characteristics of the neuronal high-affinity glutamate transporter (Km D-Asp,CHO cells: 2.23+/-0.15 microM; Km D-Asp,oocytes: 17.01+/-3.42 microM). In both expression systems, low drug concentrations (10-100 microM) activated substrate uptake (up to 200% of control), whereas concentrations in the millimolar range inhibited (up to 50%). Furthermore, the activation was more pronounced at low substrate concentrations (1 microM), and the inhibition was attenuated. The activity of other sodium cotransporters such as the sodium/D-glucose cotransporter SGLT1, stably transfected in CHO cells, was not affected by benzodiazepines. In electrophysiological studies, these drugs also failed to change the membrane potential of EAAC1-expressing Xenopus laevis oocytes. These results suggest a direct action on the glutamate transporter itself without modifying the general driving forces. Thus, in vivo low concentrations of benzodiazepines may reduce synaptic glutamate concentrations by increased uptake, providing an additional mechanism to modulate neuronal excitability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.