Abstract
Transformation-induced plasticity (TRIP) steel possesses high strength and formability, enabling the use of a thinner gauge material and allowing for the fabrication of complex shapes. In this research, we measured the effect of bending temperatures on the microstructure and air-bending springback angle of TRIP steel at temperatures from 25 to 600 °C. Real-time in situ X-ray diffraction and scanning electron microscopy were used for pre- and postbending analysis. As the prebending temperature increased from 25 °C to 600 °C, the retained austenite (RA) volume fraction decreased, and the RA transformed to bainite at temperatures above 400 °C. The springback angle was positively correlated with the prebending RA volume fraction, with the smallest springback angle achieved at 400 °C. Additionally, the springback angle was positively correlated with the bending angle, because the RA transformation ratio contributed to increased strain hardening. Further microstructure analysis revealed that the RA became elongated in the tension direction as the bending temperatures increased.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.