Abstract

Nanodevices consisting of the suspended and supported parts of topological insulator Bi2Se3 nanowires were fabricated and measured at low and room temperatures. Probing of topological surface states, accompanied by the electrostatic field effect used to dynamically manipulate bending deformation, was carried out to monitor the external strain introduced into the suspended and supported parts within the same Bi2Se3 nanowire. Depending on the device geometry, pure elastic and elastoplastic types of concave deformation, as well as convex buckling deformation, were realized in the suspended parts of the nanowires. For various types of observed deformations, different magnitudes of increase in the Source-Drain resistance of the deformed part compared to the relaxed part of the same devices were determined. All suspended devices exhibit external strain-sensitive Shubnikov-de Haas oscillation frequencies representing the carriers of top and bottom surface states and bulk, whereas, in the case of supported devices, the bottom surface states are masked by a trivial 2DEG. The obtained results may be useful for strain engineering of TI materials, as well as for applications in NEMS and other areas related to suspended nanostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.