Abstract

Background: This study was designed using a mouse model of atopic dermatitis [phthalic anhydride (PA)-treated mice], to investigate the anti-inflammatory effect of bee venom pharmacopuncture (BVP) in keratinocytes.Methods: Western blot analysis was performed to investigate inflammation related protein expression of iNOS, COX-2, phospho-ERK (p-ERK), and ERK, in LPS (1 μg/mL)-activated keratinocytes, following BVP treatment, and in PA-treated mice, after BVP treatment. Griess reaction was performed to investigate NO concentration. Enzyme-linked immunosorbent assays were used to determine the concentrations of interleukin (IL)-4+, IL-17A+, IL-13 and IL-4 in PA-treated mice after BVP treatment. In addition, monocyte, macrophage, neutrophil, and eosinophil counts were measured to observe the changes in white blood cell infiltration.Results: The keratinocytes of the BVP-treated group showed a decreased expression of iNOS, COX-2, ERK at 5 OX-2, ERK E, and p-ERK at 1, 2 and 5 RKRK ERK ERK, and a dose-dependent decrease in NO concentration at 2 and 5 ntrationof s. In the BVP-treated groups (0.1 μ.1-trea μ.1-treated gr), PA-treated mice showed recovery after 4 weeks which was dose-dependent, showing a significant decrease in clinical scores for AD, and a decreased concentration of IL-13 and IL-4 with BV treatment. There was a dose-dependent decrease in the infiltration of eosinophils, neutrophils, monocytes, macrophages, and a decreased thickness of the epidermis due to inflammation, and decreased expressions of iNOS, COX-2, p-ERK, ERK, especially in the 0.1 μ0/mL BVP-treated group,<br>Conclusion: These results suggest that BVP may be an effective alternative treatment for atopic dermatitis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call