Abstract

Abstract In this study, pseudo-static and dynamic analyses were performed for reasonable earthquake-resistant designs of soil-pile systems. The emphasis was on evaluating the effect of bedrock acceleration on the earthquake-resistant design of soil-pile systems in sand. Three-dimensional (3D) numerical analysis was performed at different bedrock accelerations and soil densities. Numerical solutions were verified against data from 1 g shaking table tests. In this study, it is found that as the peak bedrock acceleration increases, the peak superstructure acceleration increases, whereas the peak ground surface acceleration tends to decrease due to the hysteretic damping and nonlinear behaviors of the soil. It is also observed that compared with dynamic analysis, pseudo-static analysis tends to more conservatively predict the soil-pile system behavior, particularly in the peak acceleration interval of 0.13 g–0.3 g at the different soil densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.