Abstract

We have studied two series of molecular beam epitaxy grown Ga1−xMnxAs epilayers with several different Be doping levels. Two Mn concentrations x were chosen for this study: 0.03 and 0.05, and these values were maintained constant in each series. These samples were characterized by using SQUID and magnetotransport measurements. A systematic increase of the Curie temperature TC was observed in SQUID measurements on the series of Ga1−xMnxAs with x=0.03. The resistivity measured at zero magnetic field shows a local maximum near the Curie temperature, reflecting the effects of critical scattering near TC. The observed increase of TC in Ga1−xMnxAs for this low range of x can be explained by the increase of the free carrier concentrations in the system arising from Be doping. However, in the series of Ga1−xMnxAs with the higher concentration of Mn (x=0.05), the measurements reveal that the TC systematically decreases with increasing Be doping level. We discuss this effect in terms of a fundamental limitation of the carrier concentration that can be thermodynamically accommodated by Ga1−xMnxAs epilayers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.