Abstract

White matter lesions, also termed White Matter Hyperintensities (WMH), on T2-weighted MR images, are common in the elderly population. Of note, their presence is often accompanied with cognitive decline and the risk of dementia. Even though previous brain ischemia and WM lesion studies have been conducted and indicated that brain-derived neurotrophic factor (BDNF) might protect against neuronal cell death, the interaction between regional WMH volume and the BDNF Val66Met polymorphism on the cognitive performance of healthy elderly population remains unclear. To investigate the genetic effect of BDNF on cognitive function and regional WMH in the healthy elderly population, 90 elderly men, without dementia, with a mean age of 80.6 ± 5.6 y/o were recruited to undergo cognitive tests, structural magnetic resonance imaging (MRI) scans, and genotyping of BDNF alleles. Compared with Met homozygotes, Val homozygotes showed significantly inferior short-term memory (STM) performance (P = .001). A tendency toward dose-dependent effects of the Val allele on WMH volume was found, and Val homozygotes showed larger WMH volume in the temporal (P = .035), the occipital (P = .006), and the global WMH volume (P = .025) than others. Significant interaction effects of BDNF genotypes with temporal WMH volume on STM performance was observed (F1,89 = 4.306, P = .041). Val homozygotes presented steeper negative correlation compared to Met carriers. Mediation analysis also demonstrated that WMH in temporal, limbic, and subcortical regions might mediate the relationship between BDNF's genetic effect and STM performance. Our findings supported the hypothesis that the BDNF Val66Met polymorphism may affect susceptibility to regional WMH volume and such genotype-by-WMH interaction effect is correlated with cognitive decline in non-demented elderly males, in which the Met allele plays a protective role.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.