Abstract

The effects of intracellular acidosis induced by acidification of the basolateral (nutrient) perfusate on the structure and function of the oxynticopeptic cell were studied in in vitro frog gastric mucosa. Changing the pH of the unbuffered nutrient perfusate (UNB) from 7.2 to 3.5 acidified the oxynticopeptic cell with no change in potential difference (PD) or resistance (R). Intracellular pH (pHi), PD, and R were 7.05 +/- 0.01, 16 +/- 1 mV, 165 +/- 7 omega.cm2 before and 6.44 +/- 0.01, 16 +/- 2 mV, 170 +/- 9 omega.cm2 after nutrient acidification. Acid secretion (H+) increased from 0.86 +/- 0.07 to 1.88 +/- 0.18 mu eq.cm-2.h-1. Addition of forskolin to tissues perfused with nutrient pH (pHn) 3.5 decreased PD to 2 +/- 2 mV and further increased H+ to 3.07 +/- 0.19 mu eq.cm-2.h-1. By light and electron microscopy oxynticopeptic cells perfused with UNB, pHn 3.5, appeared normal. Oxynticopeptic cells in tissues pretreated with omeprazole and then exposed to UNB, pHn 3.5, had extensive morphological damage. On increasing the pH of the nutrient perfusate from 3.5 to 7.2 there was prompt recovery of pHi in untreated and forskolin-stimulated mucosae (pHi 6.87 +/- 0.06 and 6.85 +/- 0.04) but no recovery of pHi in tissues pretreated with omeprazole or cimetidine (pHi 6.26 +/- 0.04 and 6.44 +/- 0.06, n = 6, 30 min after reexposure to UNB, pHn 7.2). We conclude that in a secreting mucosa intracellular acidification of the oxynticopeptic cell to pHi 6.4 is associated with normal morphology, PD, R, and increased H+, and that intracellular acidosis is not de facto deleterious.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call