Abstract

Magnesium fluxed pellets are the focus of blast furnace burden research for reducing environmental load. The pelletizing, roasting and metallurgical properties of a Chinese fine magnetite ore with the addition of magnesium flux were experimentally tested, and the effects of basicity on the consolidation behavior, compressive strength, and reducibility of magnesium fluxed pellets were systematically clarified. Then, the mechanisms were analyzed by means of thermodynamics calculation and scanning electron microscopy–energy-dispersive spectrometry analysis methods. The results show that the consolidation behavior of magnesium fluxed pellets during roasting process was obviously promoted with increasing the basicity of the magnesium fluxed pellets. The compressive strength increased firstly and then decreased, reaching the maximum value of 2352 N/pellet with the basicity of 1.0. The reduction degree increased gradually with enhancing the basicity owing to the fact that the decomposition of the added CaCO3 could increase the porosity of pellets, thereby increasing the CO diffusion in pellet during reduction. Simultaneously, the reduction swelling index was improved with increasing the basicity because the generated calcium ferrite could effectively suppress the growth of iron whiskers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.