Abstract

The use of fluorspar in modern metallurgical slags, incl. slags of the argon-oxygen decarburization (AOD) process, as a fluxing agent, is associated with many disadvantages. Those disadvantages can be solved by using boron oxide as an alternative, which also provides conditions for direct microalloying of steel with boron. The paper presents the results of thermodynamic modeling of the effect of basicity and boron oxide content in slags of the CaO–SiO2–B2O3–Cr2O3–Al2O3–MgO system on the equilibrium interphase distribution of sulfur and boron, and their equilibrium content in the metal. Modeling was carried out using the HSC 8.03 Chemistry software package (Outokumpu). Slag from the desulfurization period of the AOD-process was used as the oxide phase. As a result, it was shown that, in the range of basicities 2.0-2.5 and a content of 2-4% B2O3, it is possible to carry out desulfurization of the metal, providing a sulfur content of 0.001-0.007%, and simultaneous microalloying of steel with boron in an amount of up to 0.0103%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call