Abstract

Managed baselevel lowering in tributaries that emerge from small canyons onto forested floodplains affects floodplain and fan sediment storage and small ephemeral tributary channel morphology in the Navarro River basin, Mendocino Country, California, USA. Numerous small tributaries (drainage areas up to several square kilometres) flow through culverts under Highway 128 across the forested floodplain of the Navarro River and one of its major tributaries, the North Fork. Excavation significantly deepened and widened these small tributaries upstream and downstream of culverts under the highway following the 1997 flood (recurrence interval 12 years), that inundated both the floodplain and the highway and culvert system. The excavation lowered the local baselevel of the tributary systems within the floodplain. This field study documents the effect of the lowered baselevel on floodplain and fan sediment storage and ephemeral tributary channel morphology. Excavation created defined channels in the floodplain where no channels previously existed. Additionally, the excavation and baselevel change created steps, or knickpoints, that migrated headward and incised the upstream tributary channels. Tributary incision decreases the sediment storage potential of the fan and floodplain and reduces the residence time for storage of fine sediment. A reduction in fine sediment residence time degrades downstream habitat for anadromous fish and other aquatic organisms in the Navarro River. Large wood influences floodplain and small tributary channel morphology by forming steps and increases sediment residence time by trapping sediment in forested tributary-fan-floodplain systems. Although this field investigation is specific to the Navarro River basin, our findings linking culvert maintenance excavation to geomorphic processes may be extended to other roads on forested floodplains in the Pacific Northwest or other systems with roads on floodplains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.