Abstract

The low velocity impact behavior of E-glass/basalt reinforced hybrid laminates, manufactured by resin transfer moulding technique, was investigated. Specimens prepared with different stacking sequences were tested at three different impact energies, namely 5J, 12.5J and 25J. Residual post-impact mechanical properties of the different configurations were characterized by quasi static four point bending tests. Post-impact flexural tests have been also monitored using acoustic emission in order to get further information on failure mechanisms. Results showed that basalt and hybrid laminates with an intercalated configuration exhibited higher impact energy absorption capacity than glass laminates, and enhanced damage tolerance capability. Conversely, the most favorable flexural behavior was shown by laminates with symmetrical sandwich-like configuration (E-glass fiber fabrics as core and basalt fiber fabrics as skins).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call