Abstract

GaN/GaInN asymmetric multiple quantum well light-emitting diodes with varying potential barrier thicknesses (5 and 15 nm) are grown by using metal organic chemical vapor deposition. The narrow barrier structure improves the performance of the device, including the super-linear increase of electroluminescence integral intensity, the mitigation of efficiency droop at high current density, the reduction of wavelength drift, the reduction of forward voltage, and the improvement of wall-plug efficiency. This is due to the narrowing of the thickness of the quantum barrier, which results in the smaller electric field among the quantum well, the weakening of the quantum confinement Stark effect, the more uniform distribution of carriers across the active region of the device, and the suppression of electron leakage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.