Abstract

Rabbit proximal straight tubules swell abruptly when exposed to hypotonic medium but then shrink in a few minutes as they approach their base-line volume following loss of solute and water. Potassium, the major intracellular cation, as well as sodium, is lost during this process. In the present experiments, we studied hypotonic cell volume regulation in the presence of barium, an agent reported to decrease potassium permeability. Exposure to BaCl2 significantly prolonged hypotonic volume recovery in a dose-dependent manner. Tubules depleted of potassium and loaded with sodium chloride by exposure to 10(-4) M ouabain for 1 h swelled osmometrically and subsequently volume regulated in dilute medium. Volume regulation in such tubules is a consequence of transbasement membrane hydrostatic forces. By contrast, tubules similarly loaded with sodium, but also exposed to 10(-3) M BaCl2, volume regulated only minimally in dilute medium, suggesting BaCl2 might also affect sodium movement. However, hypotonic volume regulation was restored in sodium-loaded BaCl2-treated tubules when cells were more effectively depleted of potassium by incubation in 0-mM potassium medium. We conclude that barium retards hypotonic volume regulation primarily because of its effect on potassium movement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.