Abstract
It is pointed out that the existence of bare mass terms for matter fields changes gauge symmetry patterns through the Hosotani mechanism. As a demonstration, we study an SU(2) gauge model with massive adjoint fermions defined on M4⊗S1. It turns out that the vacuum structure changes at certain critical values of mL, where m (L) stands for the bare mass (the circumference of S1). The gauge symmetry breaking patterns are different from models with massless adjoint fermions. We also consider a supersymmmetric SU(2) gauge model with adjoint hypermultiplets, in which the supersymmetry is broken by bare mass terms for the gaugino and squark fields instead of the Scherk–Schwarz mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.