Abstract

High energy ball-milling (HEBM) of pure PbO2 and of mixtures of PbO2 with BaSO4 was performed as a function of time. The powders were characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy, while the intrinsic electrochemical properties of the powders were assessed in 1M H2SO4 using a cavity microelectrode (CME). During milling, there is a transition from a tetragonal structure (β-PbO2) to an orthorhombic structure (α-PbO2) and, after 1 h, the powder is composed of ∼80 wt% α-PbO2. The addition of BaSO4 doesn't influence the kinetics of the β- to ∝-PbO2 transition. Also, during milling, the crystallite size of β-PbO2 decreases from 25 to 8 nm, while the crystallite size of α-PbO2 is constant at 14 nm. During the first few hours of milling, there is a 50 mV shift of the potential corresponding to the maximum reduction and oxidation peak current towards less negative and positive values, respectively. This effect is emphasized by the addition of BaSO4, indicating that the reversibility of the PbSO4/PbO2 system is increased. This is thought to arise as a consequence of a reduction of the crystallite size and the presence of BaSO4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.