Abstract

A novel symbiotic system combined by heterotrophic nitrification-aerobic denitrification (HN-AD) mixed bacteria and Chlorella pyrenoidosa was firstly proposed to resolve the poor tolerance and nitrogen removal performance of traditional symbiotic system for treating high ammonia biogas slurry. Results showed that the volume ratio of bacteria to algae had significant effects on nitrogen removal efficiency, microbial community structure, functional bacteria and genes. The optimal ratio was 1/3, and the average removal efficiency of TN and TP increased by 28.9% and 67.6% respectively, compared to those of HN-AD bacteria. High-throughput sequencing indicated nitrogen removal was jointly completed by HN-AD and heterotrophic denitrification. HN-AD bacteria Halomonas and Pseudomonas played a key role in nitrogen removal, and Rhodocyclaceae and Paracoccus took an important part in phosphorus removal. According to the functional gene prediction, the total relative abundance of nitrogen removal genes (0.0127%) and narG, narH and narL genes (0.0054%) were highest in 1/3 system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call