Abstract

Microbial enhanced oil recovery (MEOR), due to the formation of biofilm and the presence of biosurfactants generated by microorganisms in the reservoir, can play a role in reducing interfacial tension (IFT) and wettability alteration. In this work, the fluid-fluid interaction by measuring the IFT has been evaluated for combining two EOR methods, including low salinity water and MEOR, due to the high importance of fluid-fluid interaction in EOR. GeoBacillus stearothermophilus has been used as a bacterium to study changes in IFT. The effect of different salts, including monovalent and divalent cations and anions at different salinities, on biosurfactant performance, is investigated using IFT measurements. Also, the type of oil is evaluated in terms of its acidic and basic properties on the performance of biosurfactants. According to the results of this study, injection of GeoBacillus stearothermophilus bacteria reduces interfacial tension in acidic oil by 10.26% and in basic oil by 5.26%. According to the results, increasing salinity in the presence of oil-containing asphaltene with basic properties increases the IFT of the solution containing GeoBacillus stearothermophilus bacteria, but in the presence of acidic oil, a decrease in IFT is observed. The most significant effect of reducing the IFT of acidic oil and solution containing GeoBacillus stearothermophilus is obtained in the presence of the following salts, respectively: CaCl2 > MgCl2 > NaCl. The results show that with increasing CaCl2 concentration, the IFT between basic oil and GeoBacillus stearothermophilus solution gradually increases. This ascending trend is in the presence of NaCl salt with a lower slope. However, in the presence of MgCl2 salt, dual behavior is observed before and after the concentration of 1000 ppm, so that before this concentration, the IFT increases and then decreases. The findings of this study can help for a better understanding of the interaction of bacteria with asphaltenic oils in the presence of effective salts for low salinity water injection. The results of this study showed that by combining low salinity water with bacteria, less IFT could be obtained than low salinity water or bacteria alone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call