Abstract

We investigated the influence of backbone regiochemistry on the conductivity, charge density, and polaron structure in the widely studied n-doped donor–acceptor polymer poly[N,N′-bis(2-octyldodecyl)-1,4,5,8-naphthalenediimide-2,6-diyl]-alt-5,5′-(2,2′-bithiophene) [P(NDI2OD-T2)]. In contrast to classic semicrystalline polymers such as poly(3-hexylthiophene) (P3HT), the regioirregular (RI) structure of the naphthalenediimide (NDI)-bithiophene (T2) backbone does not alter the intramolecular steric demand of the chain versus the regioregular (RR) polymer, yielding RI-P(NDI2OD-T2) with similar energetics and optical features as its RR counterpart. By combining the electrical, UV–vis/infrared, X-ray diffraction, and electron paramagnetic resonance data and density functional theory calculations, we quantitatively characterized the conductivity, aggregation, crystallinity, and charge density, and simulated the polaron structures, molecular vibrations, and spin density distribution of RR-/RI-P(NDI2OD-T2). Importantly, we observed that RI-P(NDI2OD-T2) can be doped to a greater extent compared to its RR counterpart. This finding is remarkable and contrasts benchmark P3HT, allowing us to uniquely study the role of regiochemistry on the charge-transport properties of n-doped donor–acceptor polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.