Abstract

Abstract The present research evaluates different weight percentages of nano-B4C incorporated into Ti-6Al-4V through a powder metallurgy technique. Nano-B4C weight percentage was set at 0 %, 5 %, and 10 % with a particle size of ≤100 nm. Cylindrical preforms with different initial preform densities were prepared using a suitable die and punch assembly. Further, the preforms were sintered in a muffle furnace with argon atmosphere at a temperature of 1 100 °C for a holding period of 1 hr. Cold deformation experiments were carried out using a 1 000 kN hydraulic press; incremental loading steps of 5 kN were applied on the preform until the first visible cracks appeared on the free surfaces. The experimental results have shown that the powder metallurgy composite with 10 % nano-B4C demonstrates higher densification properties such as axial stress, axial strain, hoop stress, hydrostatic stress, and Poisson's ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call